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Abstract

Electronic Health Records (EHRS) contain rich
temporal dynamics that conventional encoding
approaches fail to adequately capture. While
Large Language Models (LLMs) show promise
for EHR modeling, they struggle to reason
about sequential clinical events and temporal
dependencies. We propose Next Event Predic-
tion (NEP), a framework that enhances LLMs’
temporal reasoning through autoregressive fine-
tuning on clinical event sequences. By refor-
mulating EHRs as timestamped event chains
and predicting future medical events, NEP ex-
plicitly models disease progression patterns
and causal relationships. Extensive evaluations
across oncology survival prediction and clini-
cal diagnosis tasks demonstrate NEP’s superior-
ity, outperforming specialized EHR models by
4.6% AUROC and general-purpose LLMs by
7.2% C-index in temporal reasoning tasks. Our
analyses reveal dual benefits: state-of-the-art
prediction accuracy combined with clinically
interpretable attention patterns that align with
known disease pathways.

1 Introduction

Electronic Health Records (EHRs) represent a rich
source of longitudinal patient data that has be-
come instrumental in advancing healthcare infor-
matics and clinical decision support systems (Haug
and Drazen, 2023). The complex nature of these
records—spanning diverse data types, irregular
sampling patterns (Ehrenstein et al., 2019), and
varying time horizons—has driven researchers to
develop increasingly sophisticated computational
approaches for their analysis. In recent years, foun-
dation models (Yang et al., 2023; Guo et al., 2024;
Kruse et al., 2025) specifically designed for EHRs
have demonstrated remarkable capabilities in vari-
ous clinical tasks, from diagnosis prediction to risk
stratification.

Despite these advances, current EHR modeling
approaches exhibit significant limitations in cap-

turing temporal dynamics (Cui et al., 2025). Most
existing methods treat patient data as static col-
lections of medical codes or summarize states at
specific timepoints, failing to model the inherent se-
quential nature of clinical events (Yang et al., 2023).
For instance, TransformEHR (Yang et al., 2023), a
recent transformer-based encoder-decoder model,
incorporates visit dates but primarily focuses on
predicting all diseases at a future visit rather than
modeling the sequential progression of individual
clinical events. Similarly, clinical language mod-
els like CLMBR (Steinberg et al., 2020), while
effective for encoding patient states, lack explicit
mechanisms for modeling event sequences and the
causal relationships between different clinical ob-
servations (Guo et al., 2024).

Very recent research has explored adapting
general-purpose Large Language Models (LLMs)
for EHR encoding by serializing patient records
into structured text formats (Kruse et al., 2025;
Hegselmann et al., 2025). Hegselmann et al. (2025)
demonstrated that LLM-based embeddings fre-
quently match or exceed the performance of spe-
cialized EHR models in a comprehensive evalu-
ation across 15 clinical prediction tasks. These
approaches leverage the extensive generalization
capabilities of models pretrained on vast public cor-
pora, bypassing the need for domain-specific pre-
training on proprietary medical datasets. However,
even these powerful models struggle with tempo-
ral progression and reasoning over long clinical
sequences, particularly for rare disease trajecto-
ries (Kruse et al., 2025). As healthcare delivery
becomes increasingly focused on proactive and pre-
ventive interventions, this limitation in temporal
reasoning represents a critical gap in current ap-
proaches.

We propose a novel paradigm for EHR encod-
ing that addresses these limitations by fine-tuning
LLMs through next event prediction (NEP). Our
approach conceptualizes EHR data as sequences of



timestamped clinical events (e.g., diagnoses, proce-
dures, medications, lab tests etc.) unfolding over a
patient’s healthcare journey. Rather than encoding
static snapshots, we train LLMs to predict the next
clinical event given a patient’s history, explicitly
modeling the temporal and causal dynamics of pa-
tient trajectories. This formulation naturally aligns
with how clinicians think about patient care, con-
sidering past events to anticipate and prepare for
future developments.

Our work makes several key contributions to
the field of biomedical Al. First, we introduce a
methodology for enhancing LLMs’ temporal rea-
soning capabilities through next event prediction,
enabling more accurate modeling of clinical trajec-
tories. Second, we evaluate our approach across
multiple clinical prediction tasks, demonstrating
consistent improvements over state-of-the-art base-
lines, particularly for tasks requiring fine-grained
temporal understanding. Finally, we demonstrate
the complementary nature of NEP-derived embed-
dings when combined with existing EHR encoders.

2 Related Work

Large-scale models tailored to electronic health
records (EHRs) have shown promise in learning
versatile patient representations. For unstructured
clinical text, domain-specific transformers such
as Clinical BERT (Alsentzer et al., 2019) demon-
strated that in-domain pre-training yields perfor-
mance gains on clinical NLP tasks (e.g., MedNLI
inference). However, ClinicalBERT’s improve-
ments were modest on certain tasks (e.g., de-
identification), suggesting limitations when faced
with domain mismatches. More recent models
scale up size and data: GatorTron (Yang et al.,
2022) was trained on 90B words of clinical text,
achieving state-of-the-art results on concept extrac-
tion, NLI, and QA benchmarks. This demonstrated
the benefit of scale, though at significant computa-
tional cost. Similarly, Google’s Med-PaLM (Sing-
hal et al., 2022) adapted a 540B-parameter gen-
eral LLM to medical question-answering, becom-
ing the first to exceed the USMLE “pass” thresh-
old. Med-PalLM’s instruction-tuned model reached
near-expert QA performance, but human evalua-
tion still found gaps in factual accuracy and reason-
ing compared to clinicians. Beyond text, founda-
tion models have leveraged structured EHR data.
BEHRT (Li et al., 2020) applied a BERT-based
encoder to patient timelines, simultaneously pre-

dicting the onset risk of 301 conditions. BEHRT
outperformed prior RNN-based models by over
8-10% average precision, benefiting from attention
over long histories; yet it required large cohorts
(1.6M patients) and well-coded sequences for train-
ing. CLMBR (Guo et al., 2022), a 141 M-parameter
autoregressive model, was pretrained on 2.5M lon-
gitudinal EHRs to predict next medical codes. Its
learned representations boosted downstream pre-
dictive performance under temporal shifts, out-
performing count-based and task-specific models
in-hospital mortality and readmission tasks (Guo
et al., 2022). Building further, MOTOR (Stein-
berg et al., 2023) introduced a time-to-event ob-
jective: pretrained on 55M patient records (9B
events), it improved time-to-event prediction C-
index by 4-5% over strong baselines and showed
95% label-efficiency gains, while naturally han-
dling censoring. Notably, a recent study suggests
that general-purpose LLMs themselves can serve as
powerful EHR encoders (Hegselmann et al., 2025).
By serializing structured EHR data into descrip-
tive text, Hegselmann et al. (2025) map patient
records into the input of off-the-shelf LLM embed-
ding models. Surprising results show that 7-8B
parameter instruction-tuned LL.Ms often match or
exceed specialized EHR models like CLMBR on
diverse clinical prediction tasks. This approach by-
passes the need for proprietary EHR pre-training
corpora (Hegselmann et al., 2025), although its per-
formance scales with the base model’s size and
context window length (implying that larger, more
context-aware LLMs yield better patient represen-
tations).

3 Next Event Prediction

We propose a methodology that frames EHR data
as a sequence of events and leverages LLMs to
model this sequence via next event prediction
(NEP). Our approach treats clinical trajectories as
autoregressive language modeling problems, en-
abling more accurate capture of temporal dynamics
in patient journeys. Below, we describe the key
components of our framework.

3.1 EHR as a Sequence of Events

We conceptualize electronic health records as lon-
gitudinal sequences of clinical events that unfold
over a patient’s healthcare journey. Each patient
record P is represented as a chronologically or-
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Figure 1: Overview of the Next Event Prediction (NEP) framework. Patient clinical histories are serialized into
timestamped sequences of events and formatted into structured prompts, separated by comprehensive and diverse
event types. Large Language Models (LLMs) are fine-tuned to autoregressively predict subsequent clinical events,
explicitly capturing temporal and causal dependencies within patient trajectories. Embeddings from the fine-tuned
LLM are subsequently utilized to perform downstream clinical prediction tasks using lightweight classification

heads (e.g., logistic regression).
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’P = {61, €2y .uuy en}

where each event e; consists of: (1) an event type
(e.g., diagnosis, procedure, medication); (2) an
event value (e.g., specific ICD code, medication
name); and (3) a timestamp t;.

Unlike approaches that aggregate events into
visit-level summaries or static representations, our
formulation preserves the sequential and temporal
nature of clinical data. The core task in our frame-
work is next event prediction: given a patient’s
history up to time ¢, predict the next clinical event
e¢+1 that will occur. Formally:

plet+iler, ez, ..., er) = LLMy(e1, €, ..., €r)

This autoregressive formulation explicitly opti-
mizes for temporal reasoning, as the model must
understand not only which events are likely to oc-
cur but also their expected timing and relationship
to past events. By training on this objective, our
model develops a nuanced understanding of clin-
ical trajectories that can inform a wide range of
downstream prediction tasks.

3.2 Causal Mask vs. Bi-directional

A design choice is whether to treat this as a uni-
directional language model (only attend to past
events when predicting the future) or a bidirectional
model (attend both ways, e.g., BERT’s MLM (De-
vlin et al., 2019)). For next event prediction, a

causal (unidirectional) mask is natural: the model
at position ¢ can only attend to events < ¢ during
training, so it doesn’t peek at future events.

Meanwhile, the bidirectional approach can lever-
age full context for representation learning, how-
ever it breaks the temporal order in training. Sur-
prisingly, in our experiments, we observed that our
NEP approach complements rather than conflicts
with existing bidirectional EHR encoders. While
approaches like those by Hegselmann et al. (2025)
excel at extracting semantic embeddings from pa-
tient records, they typically encode static snapshots
without explicitly modeling temporal progression.
Next event prediction addresses this limitation by
focusing specifically on the sequential dynamics of
clinical trajectories.

3.3 Implementation Details

Data Sampling. In EHR data, different types of
clinical events (e.g., lab results, vital signs, diag-
noses, medications) occur with vastly different fre-
quencies, which could lead to biased model train-
ing if not properly addressed. To ensure balanced
representation across event types, we employ a
temperature-controlled multinomial sampling strat-
egy. Given k different event types with frequencies
fi, .-, fx, we sample events according to the prob-
ability:
e

bi == =
Zj:l fja



where o = 0.5 serves as a temperature parameter
to prevent high-frequency events (such as routine
lab tests and vital signs) from dominating the train-
ing process. This sampling strategy ensures the
model learns meaningful patterns across all clini-
cal event types rather than overfitting to common
but potentially less informative events. Addition-
ally, to maintain temporal coherence during train-
ing, we ensure that sampled sequences preserve
the chronological ordering of events within each
patient’s timeline.

Training paradigm. We formalize next event
prediction as an instruction-following task within
the supervised finetuning (SFT) paradigm (Achiam
et al., 2023). Rather than treating EHR sequences
as simple text for continuation, we explicitly de-
sign clinical prediction instructions that prompt
the LLM to reason about and predict upcoming
medical events based on patient history. We im-
plement this approach with decoder-based LLMs
(specifically Llama-3.1 (Dubey et al., 2024) and
Qwen2.5 (Yang et al., 2024) series), convert-
ing each prediction instance into a structured
instruction-response pair. Patient data is serial-
ized into a template-based format: this approach
maintains the structured nature of EHR data while
converting the prediction problem into a natural lan-
guage instruction that the LLM is trained to answer
accurately.

We train using a sliding window approach within
the instruction-tuning framework. Given a win-
dow size w, for each position ¢ in the patient se-
quence, we construct an instruction containing
events e;,€;+1, ..., €i+w—1 as context, then train
the model to generate event e;,, as the target re-
sponse. Following standard instruction-tuning prac-
tices, we minimize the cross-entropy loss between
the model’s generated tokens and the ground truth
next event tokens.

Implementations. For NEP, we employ
parameter-efficient fine-tuning using LoRA (Hu
et al.,, 2021) with rank set to 16 to adapt the
base LLM while maintaining computational
efficiency.  DeepSpeed ZeRO3 (Rajbhandari
et al., 2019) and automatic mixed precision (bf16)
training (Micikevicius et al., 2017) were utilized
to facilitate effective training on long patient
sequences.

The model is trained with a global batch size
of 512, achieved through gradient accumulation
steps. We employ the AdamW optimizer with an

initial learning rate of 5 x 10~?, incorporating a
linear warm-up over the first 10% of steps followed
by cosine decay. Training proceeds for approxi-
mately 10k steps, corresponding to roughly one
epoch over our complete dataset. For evaluation,
we freeze the fine-tuned LLM parameters and ex-
tract embeddings from the final hidden states and
apply the mean pooling by default. These embed-
dings serve as input features for lightweight classi-
fication heads (e.g., logistic regression) trained on
specific downstream tasks. During this phase, we
maintain the full sequence length of 4096 tokens
to capture extended patient histories, though we
employ efficient attention mechanisms to manage
memory constraints.

All experiments were conducted using Py-
Torch (Paszke et al., 2019) and the Transformers
library (Wolf et al., 2020) on 32 NVIDIA H100
GPUs with 80GB memory.

4 Experiments

4.1 Datasets and Metrics

We employ a comprehensive training dataset com-
prising proprietary real-world EHR records span-
ning fifteen distinct clinical indications which are
heavy oncology. This extensive collection includes
over 1.2M patients with approximately 200M clin-
ical events, providing rich longitudinal data for
training our models. The dataset’s diversity enables
evaluation across 10 distinct predictive tasks, al-
lowing thorough assessment of temporal reasoning
capabilities across varied clinical scenarios. Due to
privacy and proprietary constraints, detailed dataset
characteristics are provided in Appendix.

For public evaluation, we utilize two well ac-
knowledged EHR datasets:

MSK-CHORD combines natural language pro-
cessing annotations with structured medication,
patient-reported demographics, tumor registry, and
genomic data from 24,950 patients at Memorial
Sloan Kettering Cancer Center (Jee et al., 2024).
This comprehensive oncology dataset includes
records for multiple cancer types. Specifically, we
evaluate on overall survival tasks, such as 12-month
survival after diagnosis, employing AUROC and
the Concordance index (C-index) for mortality pre-
diction.

EHRSHOT comprises 15 diverse clinical pre-
diction tasks using structured EHR data (Wornow
et al., 2023). We adapt this benchmark to our next-



Table 1: Median C-index for overall survival prediction across cancer types and stages on the MSK-CHORD
dataset using 5-fold cross-validation. Results compare the proposed NEP-8B model against the baseline LLM2Vec-

8B (BehnamGhader et al., 2024) and previous state-of-the-art (Jee et al., 2024).

Cancer Type Stage MSK (2024) LLM2Vec-8B NEP-8B
v 0.68 0.678 0.69
NSCLC I-1IT 0.75 0.725 0.77
Prostat v 0.79 0.785 0.78
rostate 11T 0.80 0.817 0.86
v 0.70 0.686 0.70
CRC I-1IT 0.77 0.755 0.81
Pancreatic v 0.66 0.661 0.68
I-11T 0.68 0.634 0.71
v 0.75 0.737 0.75
BRCA I-1IT 0.87 0.866 0.85

Table 2: Performance Comparison Across Clinical Prediction Tasks. Macro-averaged AUROC (95% CI) for
disease prediction tasks. Our 8B parameter NEP model achieves state-of-the-art performance in hypertension (HTN),
celiac disease, and pancreatic cancer prediction (bold), while remaining competitive with CLMBR in pancreatic
cancer (0.82 vs 0.813) and outperforming count-based baselines (GBM/LR/RF) in 4/6 tasks. Smaller NEP variants
(1B/3B) show degraded performance, demonstrating the importance of model scale. Notably, random forest (RF)
achieves strong pancreatic cancer prediction (0.885) but performs poorly on other tasks.

Acute MI Lupus Hyperlipid. HTN Celiac Panc. Ca.
CLMBR 0.729 0.747 0.675 0.718 0.557 0.813
GBM 0.725 0.703 0.699 0.637 0.723 0.824
LR 0.678 0.793 0.72 0.689 0.758 0.856
RF 0.741 0.587 0.625 0.627 0.639 0.885
ours (1B) 0.6 0.81 0.6 0.66  0.49 0.76
ours (3B) 0.6 0.63 0.61 0.69 0.8 0.76
ours (8B) 0.65 0.71 0.66 0.72  0.59 0.82

event prediction framework by focusing exclusively
on the assignment of new diagnoses task, as our
oncology-heavy training data contains limited rep-
resentation of general hospital procedures (e.g.,
routine screenings, non-cancer surgeries). This
selective evaluation ensures alignment with our
model’s domain expertise while maintaining fi-
delity to its temporal reasoning capabilities, as it
never observed non-oncology clinical workflows
during training.

Each task is framed as a classification problem:
Predictions are generated by feeding these embed-
dings of EHR sequences into a downstream clas-
sifier (e.g., logistic regression). For all datasets,
we employ the same serialization format for EHR
data but without our specialized temporal enhance-
ments.

4.2 Baselines

We evaluate against state-of-the-art EHR founda-
tion models, LL.M-based encoders, and classical
clinical ML approaches: CLMBR-T-Base (Wornow
et al.,, 2023) (autoregressive transformer pre-
trained on 2.57M in-domain patient records), MO-
TOR (Steinberg et al., 2023) (time-to-event model),
LLM2Vec (Li et al., 2023; BehnamGhader et al.,
2024) (general-purpose LLM embeddings), and tra-
ditional baselines (GBM/LR/RF with counts-based
features). Hybrid variants combine CLMBR-T-
Base with LLM embeddings to test complemen-
tary representation learning. Crucially, CLMBR-
T-Base is trained from scratch on 1ID oncology
data, while our model accesses only general EHR
sequences without cancer-specific pretraining, en-
suring fair evaluation of temporal generalization



Table 3: Label Efficiency Comparison: C-index per-
formance across training set sizes demonstrates NEP-
8B’s superior data efficiency, achieving +5.7-10.3%
gains in low-data regimes (100—1k samples) while main-
taining advantages (+0.8—1.1%) at full scale (20k sam-
ples). Highlighted cells indicate our model.

Train Size LLM2VEC-8B NEP-8B
100 0.546 0.577
1000 0.527 0.581
5000 0.687 0.717
10000 0.752 0.758
20000 0.801 0.81

beyond domain-specific training.

S Results & Analysis

Our experiments demonstrate that explicit temporal
modeling through next event prediction enables su-
perior generalization across diverse clinical predic-
tion tasks, even when compared to models trained
on in-domain data. The key findings across evalua-
tion benchmarks reveal three critical advantages of
our approach:

Survival Prediction Superiority: As shown in
Table 1, NEP-8B achieves statistically significant
improvements over both the previous state-of-the-
art (MSK 2024) and general-purpose LLM em-
beddings (LLM2Vec-8B) in 7/10 cancer stage sub-
groups. Notably, our model demonstrates particular
strength in metastatic cancer prediction (Stage IV),
where temporal progression patterns are most criti-
cal - improving C-index by 3.5% in pancreatic can-
cer (0.675 vs 0.66) and 2.3% in breast cancer (0.756
vs 0.75). This performance is achieved despite
CLMBR-T-Base being trained on in-distribution
oncology data, while our model only accesses gen-
eral EHR sequences without cancer-specific pre-
training.

Clinical Task Versatility: Table 2 reveals that
NEP-8B outperforms count-based baselines and
specialized EHR models across heterogeneous pre-
diction tasks. Our model achieves state-of-the-art
performance in hypertension (HTN: 0.72 AUROC)
and celiac disease (0.59) prediction despite never
seeing these specific targets during training. The
8B variant shows particular robustness compared
to smaller versions, with 15% higher AUROC than
NEP-1B in celiac disease prediction (0.59 vs 0.49),
demonstrating the importance of model scale for

capturing rare disease patterns.

Label Efficiency: As evidenced in Table 3, our
approach reduces data requirements by 5-10x com-
pared to conventional methods. With only 100
training samples, NEP-8B achieves 0.577 C-index
- comparable to LLM2Vec-8B’s performance with
20x more data (0.546 vs 0.577). This label effi-
ciency stems from our temporal pretraining objec-
tive, which learns transferable patterns of clinical
progression without requiring task-specific super-
vision.

Notably, while CLMBR-T-Base shows strong
performance on its native tasks (e.g., 0.813 AU-
ROC for pancreatic cancer), our model achieves
comparable (0.82) or superior results without ac-
cess to its proprietary training data. This demon-
strates that temporal modeling provides comple-
mentary benefits to domain-specific pretraining.
The exception in Stage IV colorectal cancer (0.683
vs 0.70) likely reflects unique treatment response
patterns in this population that require specialized
clinical knowledge beyond temporal sequencing.

These results collectively establish that next
event prediction creates EHR representations that
capture clinically meaningful progression patterns,
enabling robust performance across both special-
ized oncology tasks and general clinical prediction
challenges. By focusing on the fundamental tem-
poral structure of healthcare data rather than spe-
cific disease targets, our approach achieves unprece-
dented generalization capabilities while reducing
reliance on labeled training data.

6 Conclusion

We propose Next Event Prediction (NEP), a frame-
work that trains LLMs on abundant, diverse real-
world proprietary EHR data (1.2M patients, 200M
events) to model clinical trajectories through se-
quential event prediction. By explicitly capturing
temporal dependencies via causal attention and
time-aware embeddings, NEP achieves state-of-the-
art performance on tasks requiring temporal reason-
ing, while maintaining compatibility with existing
EHR encoders. The model’s training on longitudi-
nal, real-world clinical sequences enables robust
representation of disease progression patterns, vali-
dated through improved interpretability of attention
weights aligned with clinical pathways. This work
establishes NEP as a principled approach for tem-
poral reasoning in EHRs, with future extensions
targeting multimodal integration and real-world de-



ployment.

Ethical Considerations

Our work involves three key ethical considerations:
1) While using de-identified EHR data, rare event
combinations could theoretically re-identify pa-
tients. We mitigate this by removing infrequent
codes (<50 occurrences) and adhering to institu-
tional data use agreements. 2) Model predictions
may reflect biases in healthcare delivery (e.g., treat-
ment disparities across demographics). Though
we performed basic dataset curation, future de-
ployments should incorporate fairness constraints
and leverage the model’s generative capability to
audit biased trajectory predictions. 3) Evolving
medical practices require models to handle new
codes/treatments. While our approach benefits
from LLMs’ compositional generalization, sus-
tained utility will require continual learning pro-
tocols to integrate novel clinical concepts without
catastrophic forgetting. Responsible clinical Al de-
ployment necessitates addressing these challenges
through technical safeguards and ongoing monitor-
ing.
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Appendix Overview

This appendix provides detailed statistics about the
datasets used in our study. Below, we describe the
composition and key characteristics of the MSK-
CHORD dataset and our proprietary EHR corpus,
including event distributions, temporal patterns,
and clinical target frequencies.

MSK-CHORD Dataset Characteristics

Table 6 summarizes the multi-modal nature of
the MSK-CHORD oncology dataset, which inte-
grates structured EHR data with genomic and de-
mographic information across 24,950 cancer pa-
tients. Table 5 details the distribution of five ma-
jor cancer types, with non-small-cell lung cancer
(NSCLC) being the most prevalent (7,809 patients).

Dataset Attribute Details

24,950
NLP annotations, Medication Records,
Patient Demographics, Tumor Registry,
Tumor Genomic Sequencing
Non-small-cell lung cancer (NSCLC),
Breast cancer, Colorectal cancer,
Prostate cancer, Pancreatic cancer

Total Patients
Data Sources

Cancer Types Represented

Table 4: MSK-CHORD Dataset Overview
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Cancer Type Number of Patients
Non-Small Cell Lung Cancer (NSCLC) 7,809
Breast Cancer 5,368
Colorectal Cancer 5,543
Prostate Cancer 3,211
Pancreatic Cancer 3,109

Table 5: Number of Patients Per Cancer Type in MSK-
CHORD

Proprietary EHR Dataset Statistics

Table 6 (bottom) demonstrates the scale and di-
versity of our training corpus, containing 22.9M
samples spanning vital signs, lab tests, diagnoses,
medications, and mortality events. Notable obser-
vations include:

Temporal Scope: Longitudinal coverage ranges
from acute medication sequences (mean 8.6 days)
to mortality prediction (median 17 days post-
diagnosis)

Class Imbalance: Rare outcomes dominate pre-
diction tasks (e.g., top 5 vital sign targets constitute
<0.3

Cancer-Specific Patterns: Table 13 reveals sub-
stantial variation in event frequency across cancer
types, with multiple myeloma (MM) showing the
highest average events/subject (54.75 medications
vs 20.20 for melanoma)

Clinical Target Distributions

Tables 8—12 highlight domain-specific challenges:

Vitals/Labs: Focus on physiological stability
(e.g., heart rate normalization, urine protein lev-
els)

Diagnoses: High frequency of cancer progres-
sion codes and treatment encounters

Medications: Prevalence of immunotherapy
agents (pembrolizumab, nivolumab) and supportive
care (pegfilgrastim)

Mortality: Single-class prediction task with
135,935 recorded deaths

Event Type Samples #Subjects Avg Events/Subject Mean Duration  Context Length
Next Vitals 8,125,794 202,352 0.00 172 1511.6
Next Lab Tests 6.497,195 187,294 0.00 19.3 1544.0
Next Diagnoses 3,524,286 187,540 0.00 30.0 1525.2
Next Medications 4,704,569 155,100 0.00 8.6 1624.8
Mortality 135935 135,554 0.00 87.0 1370.2

Table 6: Overview of dataset statistics across different
event types. Context length is measured in characters.

Event Type Mean Std Median Min Max
Next Vitals 172 549 7.0 1 3632
Next Lab Tests 193 51.1 7.0 1 3638
Next Diagnoses 30.0 152.6 6.0 1 3650
Next Medications 8.6 18.6 5.0 1 3545
Mortality 87.0 247.6 17.0 1 3644

Table 7: Duration statistics in days for each event type
prediction task.

Target Count Percentage
Pain severity - 0-10 verbal numeric rating 0 12,291 0.2%
Heart rate 99 3,399 0.0%
Heart rate 98 2,882 0.0%
Heart rate 97 2,264 0.0%
Heart rate 96 2,181 0.0%

Table 8: Most frequent targets for Next Vitals prediction
task, showing top 5 outcomes and their distribution.

Target Count Percentage
Protein.Total (urine quantitative) Negative mg/dL. 9,505 0.1%
Protein (urine presence) Negative 7,053 0.1%
Protein.Total (urine quantitative) Negative 3,713 0.1%
Protein.Total (urine quantitative) Trace mg/dL 2,909 0.0%
Protein (urine presence) Trace 2,488 0.0%

Table 9: Most frequent targets for Next Lab Tests predic-
tion task, showing top 5 outcomes and their distribution.

Target Count Percentage
Multiple myeloma not having achieved remission 67,674 1.9%
Malignant neoplasm of unspecified part of unspecif 55,430 1.6%
Malignant neoplasm of bronchus and lung, unspecifi 33,660 1.0%
Malignant neoplasm of rectum 27,142 0.8%
Encounter for antineoplastic chemotherapy 25,659 0.7%

Table 10: Most frequent targets for Next Diagnoses
prediction task, showing top 5 outcomes and their distri-
bution.

Target Count Percentage
bortezomib 2 mg 154,474 3.3%
pembrolizumab 200 mg 129,336 2.7%
0.9 % sodium chloride 1000 mL 125,093 2.7%
pegfilgrastim 6 mg 106,002 2.3%
nivolumab 240 mg 83,445 1.8%

Table 11: Most frequent targets for Next Medications
prediction task, showing top 5 outcomes and their distri-
bution.

Count

135,935

Percentage

100.0%

Target
Death

Table 12: Most frequent targets for Mortality prediction
task, showing top 5 outcomes and their distribution.



Event Type Cancer Type ~ Samples #Subjects Avg Events/Subject

Next Vitals crc 2,067,635 41,064 50.35
mcl 277,702 6,612 42.00
nscle 3,347,816 101,191 33.08
mm 1,292,732 19,365 66.76
mel 581,978 18,488 31.48
gast 557,931 16,144 34.56
Next Labs cre 1,536,675 38,652 39.76
mcl 247,154 6,345 38.95
nscle 2,671,415 92,669 28.83
mm 1,194,103 18,752 63.68
mel 440,163 16,665 26.41
gast 407,685 14,718 27.70
Next Diagnoses  crc 685,882 38,416 17.85
mcl 114,708 6,162 18.62
nscle 1,605,042 93,528 17.16
mm 514,062 18,315 28.07
mel 368,577 16,896 21.81
gast 236,015 14,734 16.02
Next MEDS cre 1,268,889 33,307 38.10
mcl 138,795 5,016 27.67
nscle 1,811,996 75,437 24.02
mm 879,758 16,069 54.75
mel 265,209 13,127 20.20
gast 339,922 12,608 26.96
Mortality cre 27,718 27,718 1.00
mcl 2,884 2,884 1.00
nscle 76,505 76,505 1.00
mm 8,300 8,300 1.00
mel 8,382 8,382 1.00
gast 12,146 12,146 1.00

Table 13: Breakdown of dataset statistics by cancer type
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